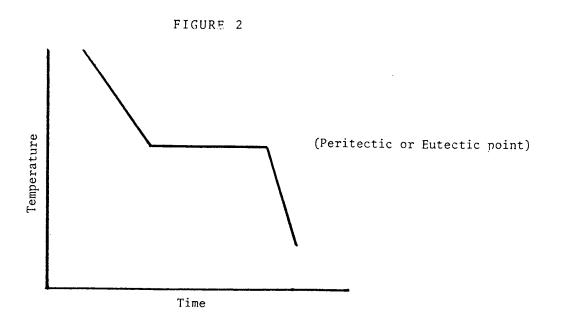
GLY 4200	
Homework Exercise	7

Name

BINARY PHASE DIAGRAMS - PERITECTIC BEHAVIOR KEY

	amine figure 1 on the attached sheet for the Wollastonite ($CaSiO_3$) -Walstromite ${}_2Si_3O_9$) - $BaSiO_3$ system. On the attached diagram, outline each liquidus line in green, each
	s line in brown.
	a. What is the minimum number of components necessary to describe all of the phases
	shown?TWO
	b. How many phases are present in the region labeled β -CaSiO ₃ + -Walstromite
	$(BaCa_2Si_3O_9)$?
	TWO
	c. How many phases are present in the region labeled α -CaSiO ₃ + Liq?
	TWO
	d. How many phases are there in the region labeled BaSiO ₃ + Liq.?
	TWO
	e. How does the number of degrees of freedom change on going from α -CaSiO ₃ + Liq to
	BaCa ₂ Si ₃ O ₉ + Liq.? No change
	f. How does the number of degrees of freedom change on going from to BaCa ₂ Si ₃ O ₉ +
	Liq. to to BaCa ₂ Si ₃ O ₉ + BaSiO _{3?} No change
	g. List the phases present at the peritectic point.
	<u>α-CaSiO₃, Walstromite, Liquid</u>
	h. How many degrees of freedom does the sample have at the peritectic point?
	Zero
	i. List the phases present at the eutectic point.
	BaCa ₂ Si ₃ O ₉ , BaSiO ₃ , Liquid
	j. How many degrees of freedom does the sample have at the eutectic point?
	Zero
	k. How do your answers to g through j explain the observed cooling curve (figure 2)
	which could apply to either the peritectic or eutectic points?
	At the peritectic point α -CaSiO ₃ is converted to BaCa ₂ Si ₃ O ₉ and heat is released. At the
	eutectic point both BaCa ₂ Si ₃ O ₉ and BaSiO ₃ crystallize, releasing heat. This keeps the
	temperature constant. Both the pertitectic and eutectic points are triple points so no
	degrees of freedom are present.


- 2. Starting with a composition of 49% BaSiO₃, trace the behavior of the melt from 1600°C to 1200°C. Show the path followed by the liquid in red, the path followed by the solid in blue.
 - a. At what temperature does the solid first appear? <u>1335°C</u>
 - b. What is the composition of the first solid? 100% α-CaSiO₃
 - c. At 1325°C, what phases are present? <u>α-CaSiO₃ + Liquid</u>
 - d. What percent of each phase is present? $\underline{5\%\alpha\text{-CaSiO}_3 + 95\% \text{ Liquid}}$

(HINT: See Lever Rule file)

- e. At 1300°C, what phases are present ? <u>BaCa₂Si₃O₉ + Liquid</u>
- f. At 1300°C, what percent of each phase is present? <u>93% BaCa,Si₃O₉ + 7% Liquid</u>
- f. What phases are present at 1200°C? BaCa₂Si₃O₉ + BaSiO₃
- g. At 1200°C what is the percent of each phase present?

98% BaCa₂Si₃O₉, 2% BaSiO₃

- h. What temperature does the last liquid disappear? <u>1268°C</u>
- i. What is the composition of the last liquid? ______ 72% BaSiO₃____

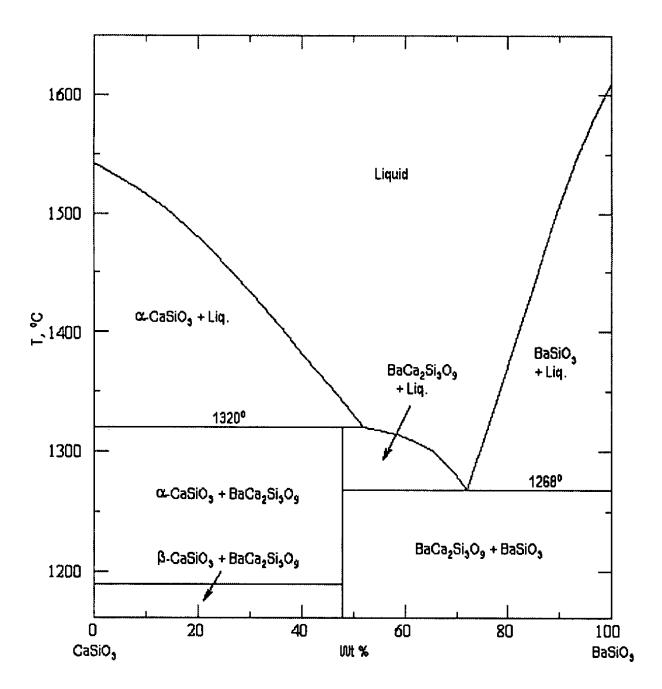


Figure 1